Compute nodes are positioned close to end users, reducing the likelihood of a network problem in a distant location affecting local customers. Edge computing devices continue to operate effectively on their own even during connectivity or cloud outages. Edge computing Improves security and privacy by reducing the need to send sensitive information to the centralized cloud, distributing the processing, storage, and use of applications across types of devices and data centers, making it a challenge for a disruption to shut down the network.
Edge computing delivers insights at the moment they’re needed. And that is important as there is a looming data tsunami due to the increasingly growing number of IoT sensors and endpoints that are sprouting at the edge, ready to facilitate the ongoing expansion of 5G technology.
The world is moving towards the next wave, “The Fourth Internet” of connected things.
A federated infrastructure means tapping into a network of underutilized data centers and systems across the world, plus new edge compute nodes as needed, and using a serverless computing platform that allows 5G to run on the network, whenever and wherever data needs to be processed. The key architectural difference is that this is all event-driven, and event-driven is what liberates developers from the burden of understanding what is happening in the infrastructure. Infrastructure needs to be smart enough to look at an event and then provision what you need provisioned at literally the software level.
Edge computing enables data processing at the far edge of the network – making data instantly available to users with low latency and reliable access.
The benefits of edge computing for 5G are clear. It offers:
Improved response times as edge computing enables local processing of data. Information doesn’t have to travel as far as it would under a traditional cloud deployment, making it available sooner.
Constant availability of an application, even during connectivity or cloud outages. Edge data centers are positioned close to end users, reducing the likelihood of a network problem in a distant location affecting local customers. Edge computing devices continue to operate effectively on their own because they natively handle processing functions.
Improved security and privacy by reducing the need to send sensitive information to the cloud. Edge computing distributes the processing, storage, and use of applications across types of devices and data centers, making it a challenge for a disruption to shut down the network.
Sustainability is an edge benefit. There are important messages of conserving energy and conserving compute power associated with the edge. Sustainability is an undeniable business imperative, and that is especially true for the IT industry. Edge computing succeeds in the face of the antiquated (and damaging) 'take, use, dispose' models.
Edge computing is designed to be located as close as possible to end-users. When combined with 5G millimeter wave propagation distances, that implies edge nodes that must exist every few hundred feet, often in cities built decades or centuries ago without planning for edge and 5G. These nodes must also be economical to deploy, provide dynamic application execution and data migration as cars, pedestrians, drones, or delivery robots come into range, and meet other demanding nonfunctional requirements such as resilience to network congestion, power outages, and even vandalism.
With the world working away from the office and in their own personal silos, bringing data to the edge, closer to those at home is now a business imperative. Hybrid workforces were created overnight and are here to stay. The pandemic accelerated the momentum toward 5G, and the need for it to support the smart devices that require rapid response times, so end users can get things done, wherever they are.
The time is now for edge computing technology that functions as a common platform delivering compute where it needs to be, automatically, and accommodates the imperatives of 5G. Distributed computing designed for low latency, serverless deployments once seemed like it was years off into the future, but it is not. The world is moving toward an explosion in the Internet of Things (IoT) or connected “things” – over one trillion connected devices in the near future, generating enormous amounts of data. It is an exciting future, built on the philosophies and premises of a smart, connected, automated world, empowered by ready, immediate, and actionable data, that frees up other resources and time.
Computing in the era of IoT is moving out of the abstract and into the real world to empower decision-making via AI and machine learning, operate cars, and increase public safety. Edge computing is integral to this future. Edge computing platforms that allow for multi-tenancy, massively reducing costs and expanding the perimeter of the edge economy - are the present, enabling the 5G and the future.