Dataiku broadens LLM Mesh

New Dataiku LLM Registry fortifies LLM Mesh with added layer of governance to qualify, document, and frame LLM usage.

  • Friday, 16th August 2024 Posted 3 months ago in by Phil Alsop

Dataiku is expanding its LLM Mesh ecosystem to facilitate secure access to thousands of large language model (LLM) gateways, empowering data and analytics teams to build and deploy GenAI-driven solutions at scale by adopting a multi-LLM strategy. Dataiku is also closing a critical governance gap to ensure regulatory readiness and effective management of LLM technologies across the organization with the LLM Registry, which allows CIOs and their teams to qualify, document, and rationalize which LLMs should or should not be used across use cases.

In a highly-competitive and volatile LLM ecosystem, Dataiku’s LLM Mesh enables organizations to take a multi-LLM approach, switching out underlying models to power GenAI-driven applications with ease. With the expansion, the LLM Mesh now supports many LLM players, including 15 major cloud and AI vendors like Amazon Web Services (AWS), Databricks, Google Cloud, Snowflake (Arctic), and more.

“Our goal is to help our customers future-proof their GenAI strategies and avoid obsolescence — that said, we provide a balanced approach to developing AI applications, while removing the risk of anchoring a strategy to a single AI provider,” said Florian Douetteau, co-founder and CEO, Dataiku. “The LLM Mesh gives organizations secure access to literally thousands of diverse models for any GenAI use case they’re looking to implement today for a true multi-LLM strategy.”

LLMs constitute one piece of GenAI applications, and the reality of LLM use in the enterprise is complex, as organizations scale to more sophisticated applications. A multi-LLM approach is essential to account for cost and performance management, privacy and security, and to meet regulatory requirements. Dataiku’s Universal AI Platform supports this comprehensive approach, in addition to supporting traditional analytics and machine learning techniques, which allows enterprises to effectively handle the complete development lifecycle of GenAI applications.

“IDC anticipates a future marked by a variety of model types, each suited to different tasks and scenarios,” said Nancy Gohring, IDC senior research director, AI. “Enterprises are likely to use many models of different sizes and modes, and should ensure they have the ability to quickly evaluate and swap models as new models come to market and use cases evolve.”

Guardz expands in EMEA

Posted 2 days ago by Phil Alsop
Through a new partnership with Infinigate Cloud, Guardz will help to secure SMBs and support the MSP community across EMEA.
Data centre operators can now achieve the unparalleled speeds needed for the most demanding Artificial Intelligence (AI) applications, thanks to a...

Dell Technologies boosts AI for enterprises

Posted 2 days ago by Phil Alsop
Dell Technologies continues to make enterprise AI adoption easier with the Dell AI Factory, expanding the world’s broadest AI solutions portfolio....

AMD accelerates Exascale Computing

Posted 2 days ago by Phil Alsop
El Capitan, powered by the AMD Instinct MI300A APU, becomes the second AMD supercomputer to surpass the Exascale barrier, placing #1 on the Top500...
Global system integrator won over by simplicity, security and speed of the Cloudbrink service.
The Seeq platform will be leveraged to maximize production and increase energy efficiency across the largest biorefinery in Europe.
This global service forms part of the recently launched Intelligent Security portfolio and increases Logicalis' proactive threat-hunting capabilities...

Pure Storage invests in CoreWeave

Posted 4 days ago by Phil Alsop
Pure Storage and CoreWeave have announced Pure Storage’s strategic investment in CoreWeave to accelerate AI cloud services innovation. Alongside...