VictoriaMetrics Machine Learning takes monitoring to the next level

Anomaly Detection empowers Enterprise IT teams overwhelmed by ‘sea of red’ alerts.

  • Thursday, 21st March 2024 Posted 8 months ago in by Phil Alsop

VictoriaMetrics has introduced its new VictoriaMetrics Anomaly Detection solution, which harnesses machine learning to make database alerts more relevant, accurate and actionable for enterprise customers.

VictoriaMetrics Anomaly Detection lightens the load on overworked data engineers, focusing their scarce resources on the alerts that matter most to their organization. By unifying anomalies under a simple scoring system, VictoriaMetrics continues its mission to make monitoring even the most complex data sets simpler, more reliable, and more efficient.

Conquering alert fatigue

As monitoring has spiraled in complexity, with databases becoming more interconnected and co-dependent, engineering teams can quickly become overwhelmed with alerts. Simplistic alerting is unable to distinguish minor performance concerns from potentially mission-critical outages.

To simplify monitoring for the very large datasets enterprises rely on today, VictoriaMetrics developed VictoriaMetrics Anomaly Detection from scratch to identify data trends and alert only for signals that matter. Now, for the first time using neural networks, it is possible to set alerts which ‘understand’ data and so can draw conclusions from the data’s context. This turns the challenges of time-series data into a strength.

“Machine Learning is famously energy intensive, as a company that prides itself on efficiency we had to balance energy usage with the value it created for businesses. VictoriaMetrics Anomaly Detection is designed to be as efficient as the rest of our product range once calibrated to make sure businesses see a clear return on their investment”

 - Roman Khavronenko, co-founder VictoriaMetrics

Using intelligent analysis

Most alert systems use threshold alerting, where an alert is sent only if a value exceeds, or falls below, a predetermined range to signal systems operating outside normal tolerances. With the scalability and seasonality of modern real-time and distributed systems, alert thresholds need to be more complex if they are to offer control of an ever-evolving and scaling database.

Instead, VictoriaMetrics Anomaly Detection analyzes historical data and attaches an anomaly score to each data point indicating how far a signal deviates from the expected value or pattern. For engineers, it couldn't be simpler, whenever the anomaly value exceeds 1, an alert can be generated, taking the cognitive load off of engineers so they can focus on what matters.

Trained in minutes

VictoriaMetrics monitoring tools are already used by some of the largest databases on the planet counting Grammarly, Wix and CERN among their users. Anomaly detection can ingest the historic data businesses are already generating to calibrate itself, with minimal oversight.

As part of its commitment to efficiency, the VictoriaMetrics team designs all new technologies with the aim of reducing database workloads. Previously, database monitoring at this level required engineering teams continuously on-call; now, monitoring teams are augmented with an AI-like tool continuously observing the system. VictoriaMetrics Anomaly Detection can account for:

Seasonality - Machine learning understands context and intelligently adapts to changing data dynamics.

Contextual anomalies - Anomaly Detection trained with historic data, allowing it to identify anomalies that would otherwise require an engineer familiar with the data set.

Collective anomalies - In isolation, concerning signals can go under the radar, continuously analyzing entire datasets to detect patterns all but senior engineers would miss.

Novelties - Anomaly Detection can detect ‘novelties’, or significant changes in the underlying system, intelligently adjusting to a ‘New Normal’.

Guardz expands in EMEA

Posted 3 days ago by Phil Alsop
Through a new partnership with Infinigate Cloud, Guardz will help to secure SMBs and support the MSP community across EMEA.
Data centre operators can now achieve the unparalleled speeds needed for the most demanding Artificial Intelligence (AI) applications, thanks to a...

Dell Technologies boosts AI for enterprises

Posted 3 days ago by Phil Alsop
Dell Technologies continues to make enterprise AI adoption easier with the Dell AI Factory, expanding the world’s broadest AI solutions portfolio....

AMD accelerates Exascale Computing

Posted 3 days ago by Phil Alsop
El Capitan, powered by the AMD Instinct MI300A APU, becomes the second AMD supercomputer to surpass the Exascale barrier, placing #1 on the Top500...
Global system integrator won over by simplicity, security and speed of the Cloudbrink service.
The Seeq platform will be leveraged to maximize production and increase energy efficiency across the largest biorefinery in Europe.
This global service forms part of the recently launched Intelligent Security portfolio and increases Logicalis' proactive threat-hunting capabilities...

Pure Storage invests in CoreWeave

Posted 5 days ago by Phil Alsop
Pure Storage and CoreWeave have announced Pure Storage’s strategic investment in CoreWeave to accelerate AI cloud services innovation. Alongside...